	Expected values		Pos		ge of values		ſ
Input data	Enter expected value here	Record source	Enter minimum value here	Record source	Enter maximum value here	Record source	
Windfarm characteristics	•	of data	+	of data	•	of data	Note: <u>Capacity factor</u> . The capacity factor of any power plant is the proportion of energy produced during a given period with respect to the energy that would have been produced had the win
nensions . of turbines	9		9		9		during a given period with respect to the energy that would have been produced had the win farm been running continually and at maximum output (DECC (2004); see also www.bwea.com/efcogaac/bkcors.htm). Capacity Factor = Electricity generated during the period (kWh)/ (Installed capacity [kW] x numb-
etime of windfarm (years) rformance	25	Fixed	25		25		hours in the period [h]) The average capacity factor between 1998 and 2004 for Scotland was 30% (DTI, 2006, Energy
wer rating of turbines (turbine capacity) (MW)	2.93 Direct input of capacity factor		2.93 Direct input of capacity factor	•	2.93 Direct input of capacity factor		Trends, March 2006). We recommend that a site-specific capacity factor site should be used (as measured during planning stage). The average capacity factor for the United Kingdom, in 2009, 27%, and 28% for Scotland (Energy Trends, September 2010)
Enter estimated capacity factor (percentage efficiency)	35.0		35		35 +		Note: Extra capacity required for backup. If 20% of national electricity is generated by wind ener the extra capacity required for backup is 5% of the rated capacity of the wind plant (Dale et al 20 Energy Policy, 32, 1943-56). We suggest this should be 5% of the actual output. If it is assumed
tra capacity required for backup (%) ditional emissions due to reduced thermal efficiency of the	1.15		1.15		4.6		less than 20% of national electricity is generated by wind energy, a lower percentage should be entered (0%).
serve generation (%)	10		9		11 📉		The House of Lords Economic Affairs Committee report on The Economics of Renewable Energy (2008) (monotonic affairs Committee report on The Economics of Renewable Energy
g. manufacture, construction, decommissioning)	Calculate wrt installed capacity		Calculate wrt installed capacity		Calculate wrt installed capacity		peak demand a 20% margin of extra capacity has been sufficient to keep the risk of a power cut io insufficient generation at a very too level. The estimate provided by BERS was a range of 00 V 20% of installed capacity of wind energy. E ON is reported as proposing that the capacity credit, wind power should be 5%, and The Revenable Energy Foundation proposating that the capacity credit, wind power should be 5%, and The Revenable Energy Foundation proposation the use of the system root of the wind capacity (in GW) as conventional capacity (e.g. 36 GW of wind plant to match 6 is of conventional park).
Characteristics of peatland before windfarm development							Vote: Extra emissions due to reduced thermal efficiency of the reserve power generation = 10%. (Date et al 2004).
pe of peatland	Acid bog 💌		Acid bog 💌		Acid bog 🔻 👞		Note: Emissions from turbine life If total emissions for the windfarm are unknown, emissions
erage annual air temperature at site (°C) Content of dry peat (% by weight)	12.9 55		12.9 50		12.9 60		be calculated according to turbine capacity. The normal range of CO ₂ emissions is 394 to 8147 t MW (White & Kulcinski, 2000; White, 2007).
erage extent of drainage around drainage features at site (m) erage water table depth at site (m)	15.00 0.50		10.00 0.10		20.00 1.50		Note: <u>Type of pealland</u> An 'acid bog' is fed primarily by rainwater and often inhabited by sphagn moss, thus making it acidic. See Stoneman & Brooks (1997). A 'fen is a type of welland fed by surface and/or groundwater. See McBride et al. (2011).
y soil bulk density (g cm ³) Characteristics of bog plants	0.10		0.09		0.11		
ne required for regeneration of bog plants after restoration	10		5		15		Note: <u>Time required for regeneration of previous habitat</u> . Loss of fixation should be assumed to b over lifetime of windfarm only. This time could be longer if plants do not regenerate. The requirements for after-use planning include the provision of suitable refugias for peak-forming
ars) rbon accumulation due to C fixation by bog plants in undrained	0.25		0.2		0.3		vegetation, the removal of structures, or an assessment of the impact of leaving them in situ. Methods used to reinstate the site will affect to likely time for regeneration of the previous habitat This time could also be shorter if olarits recentrate during lifetime of windfarm. If so, enter numb
ats (tC ha ⁻¹ yr ⁻¹) Forestry Plantation Characteristics			_				years estimated for regeneration.
athod used to calculate CO ₂ loss from forest felling Area of forestry plantation to be felled (ha)	Enter simple data 6.16		Enter simple data 6.16		Enter simple data 6.16	/	Note: <u>Carbon hasten by bog plants</u> Apparent C accumulation rate in peatland is 0.12 to 0.31 tC ha ⁻¹ yr ⁻¹ (Turunen et al., 2001; Botch al., 1995). The SNH guidance uses a value of 0.25 tC ha ⁻¹ yr ⁻¹ .
Average rate of carbon sequestration in timber (tC ha-1 yr-1) Counterfactual emission factors	3.60		3.60		3.60		¹ yr ¹ . Note: Area of forestry plantation to be felled. If the forestry was planned to be removed, with no
update counterfactual emission factors from e web Click here						1	further rotations planted, before the windfarm development, the area to be felled should be enter as zero.
(not yet operational) al-fired plant emission factor (t CO ₂ MWh ⁻¹)					*		Note: <u>Plantation carbon sequestration</u> . This is dependent on the yield class of the forestry. The S technical guidance assumed yield class of 16 m3 ha ⁺ yr ⁻¹ , compared to the value of 14 m3 ha ⁺ y privided by the Forestry Commission. Carbon sequestered for yield class 16 m ⁺ ha ⁺ yr ⁻¹ = 3.6 tC
id-mix emission factor (t CO ₂ MWh ⁻¹) ssil fuel-mix emission factor (t CO ₂ MWh ⁻¹)							provided by the Forestry Commission. Carbon sequestered for yield class 16 m ³ ha ⁻¹ y ⁻¹ = 3.6 t0 ¹ yr ⁻¹ (Cannell, 1999).
Borrow pits	1		1		1	1	Note: Coal-Fired Plant and Grid Mix Emission Factors. Coal-fired plant EF = 0.86 I CO ₂ MWh ⁻¹ C Mix EF = 0.43 I CO ₂ MWh ⁻¹ Source = Defra, 2002.
erage length of pits (m)	90		90 50		90 50		
erage width of pits (m) erage depth of peat removed from pit (m)	50 0.20		0.20		0.20		Note: <u>Fossil Fuel-Mix Emission Factor</u> . The 5 year average emission factor calculated using estimated CO ₂ emissions for 2002 and 2003 from the National Atmospheric Emission Inventory (Baggott et al., 2007), and for 2004 to 2006 (Digest of UK Energy Statistics, 2007) is 0.607 tCO ₂ MWh ⁻¹ .
Foundations and hard-standing area associated with each turbine							
inding	lectangular with vertical walls		Rectangular with vertical walls		Rectangular with vertical walls		
erage length of turbine foundations (m) erage width of turbine foundations (m)	21 21		21 21		21 21		
erage depth of peat removed from turbine foundations (m) erage length of hard-standing (m)	0.20 60		0.20 60		0.20 60		
erage width of hard-standing (m) erage depth of peat removed from hard-standing (m)	35 0.20		35 0.20		35 0.20		
Access tracks tal length of access track (m)	6912		6912		6912 🔶		Note: <u>Total length of access track</u> . If areas of access track overlap with hardstanding area, exclu these from the total length of access track to avoid double counting of land area lost.
isting track length (m) ngth of access track that is floating road (m)	1525	3940	1525		1525		these ment the origin of social takes to shore decine counting or nine sites now.
bating road width (m) bating road depth (m)					•		Note: Eloating road depth. Accounts for sinking of floating road. Should be entered as the averag depth of the road expected over the lifetime of the windfarm. If no sinking is expected, enter as z
ngth of floating road that is drained (m) erage depth of drains associated with floating roads (m)					+		Note: Length of floating roat that is drained. Refers to any drains running along the length of the
ngth of access track that is excavated road (m) cavated road width (m)	6898 6		6898 6		6898 6		
erage depth of peat excavated for road (m) ngth of access track that is rock filled road (m)	0.15		0.15		0.15		Note: <u>Rock filled roads</u> . Rock filled roads are assumed to be roads where no peat has been rem and rock has been placed on the surface and allowed to settle.
ck filled road width (m) ck filled road depth (m)							
ngth of rock filled road that is drained (m) erage depth of drains associated with rock filled roads (m)							
Cable Trenches							
cks and is lined with a permeable medium (eg. sand) (m)							Note: Depth of peat cut for cable trenches. In shallow peats, the cable trenches may be cut beic peat. To avoid overestimating the depth of peat affected by the cable trenches, only enter the d
erage depth of peat cut for cable trenches (m) dditional peat excavated (not							of the peat that is cut.
already accounted for above) lume of additional peat excavated (m ³)	1544		1544		1544		
ea of additional peat excavated (m ²) Peat Landslide Hazard	7720.0		7720.0		7720.0		Note: <u>Peat Landslide Hazard</u> . It is assumed that measures have been taken to limit damage (se becody, colo Paut Landslide Hazard ni Risk Assessment, Back Practica Guide for Propared Electric Guide for Developments. Sociation Escuritor, Edinburgh. pp. 34-35) so that C losses due to peat landslide can be assure assessments because because the social security.
eblink: Peat Landslide Hazard and Risk Assessments: Best							be negligible. Link: http://www.scotland.gov.uk/Publications/2006/12/21182303/7.
actice Guide for Proposed Electricity Generation Developments mprovement of C sequestration at site by blocking drains,							
restoration of habitat etc							
ater table depth in degraded bog before improvement (m)	0 2.00		0 1.50		0 2.50		
ater table depth in degraded bog after improvement (m)	0.00		0.00		0.00		
ne required for hydrology and habitat of bog to return to its evious state on improvement (years)	10		5		15		
provement of felled plantation land ea of felled plantation to be improved (ha) ater table denth in felled area before improvement (m)	0		0		0		
ater table depth in felled area after improvement (m)	0.00 0.00		0.00 0.00		0.00 0.00		
ne required for hydrology and habitat of felled plantation to return its previous state on improvement (years) extension of page remaind from hydrou pite	10		5		15		
storation of peat removed from borrow pits ea of borrow pits to be restored (ha)	0		0		0		
ater table depth in borrow pit before restoration (m) ater table depth in borrow pit after restoration (m) are arguined for hydrogen and hepitat of hepitat of hepitat in	0.00		0.00 0		0.00 0		
ne required for hydrology and habitat of borrow pit to return to its avious state on restoration (years)	10		10		10		
moval of drainage from foundations and hardstanding ater table depth around foundations and hardstanding before	0		0		0		
storation (m) ater table depth around foundations and hardstanding after	0.00		0.00		0.00		
storation (m) ne to completion of backfilling, removal of any surface drains,	25		25		25		Note: Restoration of site. If the water table at the site is returned to its original level or higher o
d full restoration of the hydrology (years) Restoration of site after decomissioning					+		decommissioning, and habitat at the site is restored, it is assumed that C losses continue only o lifetime of the windfarm. Otherwise, C losses from drained peat are assumed to be 100%.
II the hydrology of the site be restored on decommissioning? Il you attempt to block any gullies that have formed due to the	Yes		Yes		No		-
ndfarm? If you attempt to block all artificial ditches and facilitate	Yes 💌 Yes 🐨		Yes 💌 Not applicab 💌		No Ves Ves		-
			Yes		No		
wetting?. If the habitat of the site be restored on decommissioning?	No		100				
vetting? If the habitat of the site be restored on decommissioning? If you control grazing on degraded areas? If you manage areas to favour reintroduction of species	No V		Yes V		No V		

Core input data. ENTER NUT DATA HEREI VALUES SHOULD ONLY BE CHANGED ON THIS SHEET. DO NOT USE EXAMPLE VALUES AS DEFAULTSI ENTER YOUR OWN VALUES THAT ARE SPECIFIC TO YOUR ARTICULAR STITE. Note: The input parameters include some variables that can be specified by default values, but others that must be site specific. Variables that can be laken from defaults are marked with papie lago in this hard side.

Results
PAYBACK TIME AND CO ₂ EMISSIONS

Note: The carbon payback time of the windfarm is calculated by comparing the loss of C from the site due to windfarm development with the carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Click here to return to Input data Click here to return to Instructions

	Exp.	Min.	Max.
1. Windfarm CO ₂ emission saving over			
coal-fired electricity generation (tCO ₂ yr ⁻¹)	0	0	0
grid-mix of electricity generation ($tCO_2 yr^{-1}$)	0	0	0
fossil fuel - mix of electricity generation (tCO ₂ yr ⁻¹)	0	0	0
Total CO ₂ losses due to wind farm (t CO ₂ eq.)			
2. Losses due to turbine life (eg. manufacture,	20431	20431	20431
construction, decomissioning)	0	0	0
 Losses due to backup Losses due to reduced carbon fixing potential 	1070	0 541	0 1863
 Losses due to reduced carbon fixing potential Losses from soil organic matter 	1070	2336	1863 2519
 Losses from soil organic matter Losses due to DOC & POC leaching 	1983	2336	2519
7. Losses due to DOC & POC leaching 7. Losses due to felling forestry	2033	2033	2033
Total losses of carbon dioxide	2033	2033	2033
3. Total CO ₂ gains due to improvement of site (t CO ₂ eq.		20404	20040
8a. Gains due to improvement of degraded bogs	0	0	0
8b. Gains due to improvement of felled forestry	0	0	0
8c. Gains due to restoration of peat from borrow pits	0	0	0
8d. Gains due to removal of drainage from foundations & hardstanding	k 0	0	0
Fotal gains	0	0	0
-			
RESULTS			
	_		
Not emissions of earbon disxide (t CO	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO _{2 eq} .)	05540	05454	00040
Carbon Dauback Time	25518	25454	26846
Carbon Payback Time coal-fired electricity generation (years)	#DIV/0!	#DIV/0!	#DIV/0!
coal-fired electricity generation (years) grid-mix of electricity generation (years)	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
fossil fuel - mix of electricity generation (years)	#DIV/0!		
years)			
Greenhouse gas emi	ssions	1	1
20000			
Creenhouse gas emissions 20000 15000 15000 0 0 0 0 0 0 0 0 0 0 0 0			
52 E 10000 -			
8 5000 -			
	↓		
Green bine life Backup g plants : carbon : carbon forestry	sbo	stry.	pits
Green Turbine life Backup Bog plants Soil organic carbon DOC & POC	Improved degraded bogs	Improved felled forestry	Restored borrow pits Stop drainage of foundations
Tur Bo DOC DOC	grad	elled	four
and the second s	deç	ed fe	torec le of
No Solo Solo Solo Solo Solo Solo Solo So	ovec	provi	Rest
a M	udu	Ē) dra
			Sto

Check Check Check Check Check Check Check

Check

by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Click here to return to Input data Click here to return to Instructions

Turbine life Backup Bog plants Soil organic carbon DOC & POC Management of forestry Improved degraded bogs Improved felled forestry Restored borrow pits ■ Stop drainage of foundations

Restored borrow pits

Stop drainage of foundations